• Aktie :

  • in
  • https://www.facebook.com/profile.php?id=100031871989158
  • g
  • y
  • t
Produkte
Startseite / Produkte
  • PLA-NA-LCF
    Xiamen LFT-G PLA Polymilchsäurefüllung Lange, kohlenstofffasermodifizierte Compounds mit hoher Leistung
    PLA-Informationen PLA, auch Polylactid genannt, bezieht sich auf das Polyesterpolymer, das durch Polymerisation von Milchsäure als Hauptrohstoff gewonnen wird, wobei in der Regel nachwachsende Pflanzenressourcen (wie Mais, Maniok usw.) aus Stärke als Rohstoff verwendet werden. Es handelt sich um eine neue Art von erneuerbarem, biologisch abbaubarem Material. Eigenschaften des PLA-Materials Die Rohstoffe sind erneuerbar und relativ leicht zu gewinnen, selbst wenn sie als 3D-Druckmaterialien verwendet werden, die für die Massenproduktion verwendet werden können; Das PLA weist eine gute thermische Stabilität und Lösungsmittelbeständigkeit auf. Die Verarbeitungstemperatur von PLA liegt zwischen 170 °C und 230 °C und das fertige Produkt weist eine gute Hitzebeständigkeit auf. Gute Durchlässigkeit und Transparenzglanz, kann durch Extrusion, Spinnen, biaxiales Strecken, Spritzblasen und auf andere Weise verarbeitet werden, Zug- und Biegemodul können mit dem herkömmlichen Kunststoffharz vergleichbar sein; Hohe Biokompatibilität. Das Monomermaterial von PLA, L-Milchsäure, ist ein endogener Wirkstoff im menschlichen Körper. Daher ist das mit dem 3D-Druckmaterial PLA gedruckte Endprodukt für den menschlichen Körper ungiftig und kann vom menschlichen Körper aufgenommen werden. Es weist eine gute Abbaubarkeit auf. Anders als die Abbaumethoden anderer 3D-Druckmaterialien wird PLA in den Boden eingebettet und von Mikroorganismen in der Natur unter bestimmten Bedingungen vollständig abgebaut, um Kohlendioxid und Wasser zu erzeugen. Das erzeugte Kohlendioxid gelangt direkt in die organische Substanz des Bodens oder wird von Pflanzen absorbiert, anstatt in die Luft abgegeben zu werden, was als umweltfreundliches Material gilt. Anwendung von PLA-Materialien Aufgrund der guten mechanischen und physikalischen Eigenschaften des PLA-Materials wird PLA-Material häufig verwendet, darunter verschiedene Lebensmittelbehälter, verpackte Lebensmittel, Fast-Food-Lunchboxen usw.  Gleichzeitig kann PLA mit seinen Vorteilen in Bezug auf Kompatibilität und Abbaubarkeit auch im medizinischen Bereich eine große Rolle spielen, da es zu medizinischem Gewebeskelettmaterial und medizinischen Trägern für den menschlichen Körper verarbeitet werden kann. Zusätzlich zu seiner hervorragenden Zugfestigkeit und Dehnbarkeit kann PLA durch verschiedene gängige Verarbeitungsverfahren hergestellt werden, wie z. B. Schmelzextrusionsformen, Spritzgießen, Blasfolienformen, Schaumformen und Vakuumformen. Über uns
    mehr sehen
  • PA12-NA-LCF30
    LFT-G Polyamid 12, langes, mit Kohlenstofffasern gefülltes, modifiziertes Nylon12, hohe Schlagfestigkeit und Zähigkeit
    Lange Kohlefaser Kohlefaser hat viele hervorragende Eigenschaften, hohe axiale Festigkeit und Modul, geringe Dichte, hohe spezifische Leistung, kein Kriechen, superhohe Temperaturbeständigkeit in nicht oxidierender Umgebung, gute Ermüdungsbeständigkeit, spezifische Wärme und elektrische Leitfähigkeit zwischen Nichtmetall und Metall, klein Wärmeausdehnungskoeffizient und Anisotropie, gute Korrosionsbeständigkeit, gute Röntgendurchlässigkeit. Gute elektrische und thermische Leitfähigkeit, gute elektromagnetische Abschirmung usw. Im Vergleich zu herkömmlichen Glasfasern hat Kohlefaser mehr als das Dreifache des Elastizitätsmoduls; Im Vergleich zu Kevlar-Fasern, die in organischen Lösungsmitteln, Säuren und Laugen unlöslich und gequollen sind und eine hervorragende Korrosionsbeständigkeit aufweisen, beträgt der Elastizitätsmodul etwa das Zweifache. Aber gibt es eine Möglichkeit, den Preis für Kohlefaser zu senken? Das heißt, es mit relativ billigem Nylonmaterial zu mischen, um ein Verbundmaterial mit guter Leistung zu bilden und die Anforderungen zu erfüllen. In diesem Fall besteht kein Zweifel daran, dass Carbonfaser-Nylon definitiv einen Platz im Verbundmaterial haben wird. Nylon selbst ist ein technischer Kunststoff mit hervorragender Leistung, aber Feuchtigkeitsaufnahme und schlechter Dimensionsstabilität der Produkte. Festigkeit und Härte sind ebenfalls weit entfernt von Metall. Um diese Mängel zu überwinden, wurde bereits vor den 70er Jahren gearbeitet. Um die Leistung zu verbessern, wurden Kohlefasern oder andere Faserarten zur Verstärkung verwendet. Kohlenstofffaserverstärkte Nylonmaterialien haben sich in den letzten Jahren rasant weiterentwickelt, da Nylon und Kohlenstofffasern im Bereich technischer Kunststoffe hervorragende Leistungen erbringen. Die Synthese von Verbundmaterialien spiegelt die Überlegenheit der beiden wider, z. B. Festigkeit und Steifigkeit sind viel höher als bei unverstärktem Nylon , Hochtemperaturkriechen ist gering, thermische Stabilität hat sich deutlich verbessert, gute Maßhaltigkeit, Verschleißfestigkeit. Hervorragende Dämpfung, Im Vergleich zu glasfaserverstärktem Material ist die Leistung besser. Daher haben sich in den letzten Jahren kohlenstofffaserverstärkte Nylon-Verbundwerkstoffe (CF/PA) rasant entwickelt. Und für den 3D-Druck ist die SLS-Technologie das am besten geeignete technische Mittel, um kohlenstofffaserverstärktes Nylon herzustellen. TDS als Referenz Anwendung Unser Unternehmen Xiamen LFT Composite Plastic Co., Ltd ist ein Markenunternehmen, das sich auf LFT&LFT konzentriert. Langglasfaser-Serie (LGF) und lange Carbonfaser-Serie (LCF). Der thermoplastische LFT des Unternehmens kann für das Spritzgießen und Extrudieren von LFT-G sowie für das Formen von LFT-D verwendet werden. Es kann nach Kundenwunsch hergestellt werden: 5 bis 25 mm Länge. Die durch kontinuierliche Infiltration verstärkten Thermoplaste des Unternehmens haben die Systemzertifizierung ISO9001 und 16949 bestanden und die Produkte haben zahlreiche nationale Marken und Patente erhalten.
    mehr sehen
  • PA6-NA-LCF
    Xiamen LFT-F Polyamid 6-Füllung, langer Carbonfaser-Verbundkunststoff, 5–25 mm Länge
    Produktnummer: PA6-NA-LCF40 Produktfaser: 20 % - 60 % Produktanwendung: Geeignet für die Herstellung von Helmen, Autoschwellen, Robotern und Waffen usw. Produktmerkmale: Hohe Zähigkeit, geringes Gewicht, hohe Festigkeit, Verschleißfestigkeit, Korrosionsbeständigkeit, Kriechfestigkeit, Wärmeleitung, Wärmeübertragung.
    mehr sehen
  • PP-NA-LCF30
    LFT-G Polypropylen-Langkohlefaser-modifizierter Kunststoff mit höherer Festigkeit und Originalfarbe für Autoteile
    Kohlefaserverstärkter Kunststoff Kohlenstofffaserverstärkter Kunststoffverbundstoff (CFK) ist ein leichter, robuster Werkstoff, der zur Herstellung einer Vielzahl von Produkten des täglichen Lebens verwendet werden kann. Mit diesem Begriff werden faserverstärkte Verbundwerkstoffe beschrieben, bei denen Kohlenstofffasern der Hauptstrukturbestandteil sind. Beachten Sie, dass das „P“ in CFRP auch für „Kunststoff“ statt für „Polymer“ stehen kann. Typischerweise werden für CFK-Verbundwerkstoffe duroplastische Harze wie Epoxidharz, Polyester oder Vinylester verwendet. Trotz der Verwendung von thermoplastischen Harzen in CFK-Verbundwerkstoffen wird für „kohlenstofffaserverstärkte thermoplastische Verbundwerkstoffe“ häufig die eigene Abkürzung CFRTP-Verbundwerkstoffe verwendet. LFT-G konzentriert sich auf LFT&LFT. Langglasfaser-Serie (LGF) und lange Carbonfaser-Serie. Im Vergleich zu kurzen Kohlenstofffasern weisen lange Kohlenstofffasern hervorragende mechanische Eigenschaften auf. Es eignet sich besser für große Produkte und Strukturteile. Die Zähigkeit ist 1- bis 3-mal höher als bei Kurzkohlenstofffasern und die Zugfestigkeit (Festigkeit und Steifigkeit) ist um das 0,5- bis 1-fache erhöht. Eigenschaften von CFK-Verbundwerkstoffen Mit Kohlefaser verstärkte Verbundwerkstoffe unterscheiden sich von anderen FRP-Verbundwerkstoffen, die herkömmliche Materialien wie Glasfaser oder Arylonfaser verwenden. Zu den Vorteilen von CFRP-Verbundwerkstoffen gehören: Geringes Gewicht: Herkömmliche glasfaserverstärkte Verbundwerkstoffe mit Endlosglasfaser und 70 % Glasfaser (Glasgewicht/Bruttogewicht) haben typischerweise eine Dichte von 0,065 lb/Kubikzoll. Ein CFK-Verbundwerkstoff mit dem gleichen Fasergewicht von 70 % könnte typischerweise eine Dichte von 0,055 lb/Kubikzoll haben. Erhöhte Festigkeit: Kohlefaserverbundwerkstoffe wiegen nicht nur weniger, sondern CFK-Verbundwerkstoffe sind pro Gewichtseinheit auch stärker und steifer. Dies gilt beim Vergleich von Kohlefaserverbundwerkstoffen mit Glasfasern und umso mehr beim Vergleich von Metallen. Wenn man beispielsweise Stahl mit CFK-Verbundwerkstoffen vergleicht, gilt als Faustregel, dass eine Kohlenstofffaserstruktur mit der gleichen Festigkeit typischerweise 1/5 wiegt wie Stahl. Sie können sich vorstellen, warum Automobilhersteller die Verwendung von Kohlefaser anstelle von Stahl in Betracht ziehen. Beim Vergleich von CFK-Verbundwerkstoffen mit Aluminium (einem der leichtesten verwendeten Metalle) geht man standardmäßig davon aus, dass eine Aluminiumstruktur mit der gleichen Festigkeit möglicherweise 1,5-mal so viel wiegt wie eine Kohlefaserstruktur. Natürlich gibt es viele Variablen, die diesen Vergleich verändern können. Güteklassen und Qualitäten der Materialien können variieren, und bei Verbundwerkstoffen müssen der Herstellungsprozess, die Faserstruktur und die Qualität berücksichtigt werden. Nachteile von CFK-Verbundwerkstoffen : Kosten: So erstaunlich das Material auch ist, es gibt einen Grund, warum Kohlefaser nicht in jeder Situation verwendet werden kann. Derzeit sind die Kosten für CFK-Verbundwerkstoffe in vielen Fällen zu hoch. Abhängig von den aktuellen Marktbedingungen (Angebot und Nachfrage), der Art der Kohlefaser (Luft- und Raumfahrtqualität gegenüber kommerzieller Qualität) und der Bündelgröße können die Preise für Kohlefasern erheblich variieren. Pro Pfund kann Kohlefaser fünf- bis 25-mal teurer sein als Glasfaser. Beim Vergleich von Stahl mit CFK-Verbundwerkstoffen ist der Unterschied noch größer. Elektrische Leitfähigkeit: Diese kann bei Kohlefaserverbundwerkstoffen je nach Anwendung ein Plus oder ein Minus sein. Kohlefaser ist extrem leitfähig, während Glasfaser isolierend ist. In vielen Anwendungen wird Glasfaser anstelle von Kohlefaser oder Metall verwendet, allein aufgrund der elektrischen Leitfähigkeit. In der Versorgungsindustrie beispielsweise erfordern viele Produkte die Verwendung von Glasfaser. Dies ist einer der Gründe, warum die Leiter Glasfaser als Leiterholm verwendet. Das Risiko eines Stromschlags ist viel geringer, wenn die Glasfaserleiter mit dem Netzkabel in Kontakt kommt. Anders verhält es sich bei CFK-Leitern. Obwohl die Kosten für CFK-Verbundwerkstoffe nach wie vor hoch sind, führen neue technologische Fortschritte in der Fertigung weiterhin zu kosteneffizienteren Produkten. Anwendung von PP-LCF Lange Kohlefaser als Verstärkungsmaterial von CFK, ihr Anteil beträgt nur 1/4 des Eisens, die spezifische Festigkeit ist zehnmal so hoch wie die von Eisen, der Elastizitätsmodul ist siebenmal so hoch wie die von Eisen, Kohlefaser hat hervorragende physikalische Eigenschaften und wird in verschiedenen Bereichen des Sports eingesetzt Güter zum Flugzeug. Details zum Produkt Nummer Länge Farbe Probe Paket Lieferzeit Verladehafen Fracht PP-NA-LCF30 5-25mm Originalfarbe (kann angepasst werden) Verfügbar 20 kg pro Sack 7-15 Tage nach Versand Hafen von Xiamen Abhängig von Ihrem Reiseziel Verwandte Produkte            ...
    mehr sehen
  • PEEK-NA-LCF30
    LFT-G-Verbundstoff PEEK Long Carbon Fiber 30 % natürliche Farbe für anspruchsvolle Anwendungen
    Produktklasse: Allgemeine Klasse Faserspezifikation: 20 % - 60 % Produktmerkmale: schwer entflammbar, hitzebeständig, chemikalienbeständig, niedriger Reibungskoeffizient, gute Tragfähigkeit Produktanwendung: Luftfahrt, Maschinenbau, Elektronik, Chemie, Automobilindustrie, andere High-Tech-Bereiche.
    mehr sehen
  • PA66-NA-LGF30
    LFT-G Polyamid 66 mit Zusatz von 20–60 % langglasfaserverstärktem Kunststoff als Ersatz für Metall
    Was sind Polyamid 66-Materialien? PA66, Abkürzung für Polyamid 66, chemischer Name Polyhexandiylhexandiamin, allgemein bekannt als Nylon 66. Es ist ein farbloses, transparentes, teilkristallines thermoplastisches Polymer, das häufig in Automobilen, elektrischen und elektronischen Geräten, mechanischen Instrumenten und Messgeräten, Industrieteilen und anderen Branchen verwendet wird. Aufgrund der hohen Wasseraufnahme, der geringen Säurebeständigkeit, der geringen Schlagzähigkeit im trockenen Zustand und bei niedrigen Temperaturen sowie der leichten Verformung nach der Wasseraufnahme, was sich auf die Dimensionsstabilität der Produkte auswirkt, ist der Anwendungsbereich jedoch auf a beschränkt gewissermaßen. Um die oben genannten Mängel zu beheben, den Anwendungsbereich zu erweitern und die Leistungsanforderungen besser zu erfüllen, verwenden Menschen verschiedene Methoden zur Modifizierung von PA66, um die Schlag-, Wärmeverformungs-, Form- und Verarbeitungsleistung zu verbessern chemische Korrosionsbeständigkeit von PA66-Kunststoff. Da die spezifische Festigkeit und der Elastizitätsmodul von Glasfasern (GF) 10–20 Mal größer als bei PA66 sind, beträgt der lineare Ausdehnungskoeffizient etwa 1/20 von PA66, die Wasserabsorptionsrate liegt nahe bei Null und es gibt gute Wärme- und Wärmeeigenschaften B. chemische Beständigkeit usw., daher ist die Glasfaserfüllung das am häufigsten verwendete Mittel zur Verbesserung und Modifizierung von PA66.                       Langglasfaser-Compounds mit Polyamid 66-Füllung Warum verwenden wir LFT-Kunststoffe statt Metall? Viele Komponenten, die derzeit aus Metall gefertigt werden, können kostengünstiger und leichter aus hochfesten Kunststoffen hergestellt werden. Im Vergleich zu Metallen bieten Kunststoffe eine Reihe wesentlicher Vorteile: • Schnellere Produktionszyklen • Geringere Investitionen in Ausrüstung und Werkzeuge • Eliminierung von Nachbearbeitungsvorgängen wie  maschineller Bearbeitung oder Lackierung • Keine Korrosionsprobleme • Engere Toleranzen • Einfachere Montage Was ist der Unterschied zwischen Langglasfaser und Stardard-Glasfaser? Langglasfasern (LGF) enthalten typischerweise Glasfasern mit einer Länge von 10 bis 12 mm, im Vergleich zu 0,7-mm-Fasern in standardmäßigen glasfaserverstärkten Verbindungen . Im Verbundwerkstoff aus Fasern wird geschert oder gezogen, wobei die Fasern aus der Matrix herausgezogen werden. Ein solcher Ziehvorgang begünstigt die Absorption der durch die Belastung bereitgestellten Energie. Je länger die Fasern innerhalb einer bestimmten Länge sind, desto größer ist die Energieaufnahme und desto bedeutender ist ihre Stärke. Und bei gleichem Volumen gilt: Je länger die Einzelfaser, je geringer die Anzahl der Faserwurzeln, desto geringer die Spannungskonzentration am Faserende, desto schwieriger ist die Zerstörung des Materials. Aus den Ergebnissen praktischer Anwendungsrückmeldungen geht hervor, dass die verschiedenen Eigenschaften langglasfaserverstärkter thermoplastischer Verbundwerkstoffe besser sind als bei Standardglasfasern. Darüber hinaus spielt der Faserkörper bei glasfaserverstärkten Verbundwerkstoffen im Reibungsprozess eine wichtige Rolle bei der Schmierung. Lange Glasfasern können eine wesentlich nachhaltigere und stabilere Schmierung bewirken, sodass der Reibungskoeffizient niedriger ist, der Verschleiß geringer ist und die Bildung der Schleifpartikel sind feiner. Aufgrund dieser Vorteile erbringen langglasfaserverstärkte thermoplastische Verbundwerkstoffe in realen Anwendungen eine bessere Leistung, ohne Angst vor hohen Frequenzen und hohen Belastungen haben zu müssen. Was sind die Vorteile von Polyamid 66? Nylon 6/6 besteht aus einer molekularen Struktur höherer Ordnung als Nylon 6, wodurch die positiven Eigenschaften von Nylon 6 verstärkt werden: höhere Zugfestigkeit und Steifigkeit, bessere Dimensionsstabilität und ein höherer Schmelzpunkt. Nylon 6/6 hat eine hohe Schmierfähigkeit und Beständigkeit gegenüber Kohlenwasserstoffen; und außergewöhnlich ausgewogene Festigkeit, Duktilität und Hitzebeständigkeit. So stark es auch unabhängig ist, die Zugabe von Füllstoffen, Fasern, Schmiermitteln und Schlagzähmodifikatoren kann die Festigkeit von Nylon 6/6 um das Fünffache und die Steifheit um das Zehnfache erhöhen.                       TDS aus 30 % langfaserverstärktem Polyamid 6.6                  Alle TDS mit 20–60 % Faserspezifikation, bitte fragen Sie den Techniker Welche Anwendungen gibt es für die Füllung von Glasfaserpellets mit langer Standzeit? Häufig gestellte Fragen F. Stellt das Spritzgießen von Langglasfasern und Langkohlenstofffasern besondere Anforderungen an Spritzgießmaschinen und -formen? A. Es gibt sicherlich Anforderungen. Insbesondere bei der Produktdesignstruktur sowie beim Spritzgussmaschinen-Schraubendüsen- und Formstruktur-Spritzgussprozes...
    mehr sehen
  • MXD6-NA-LGF30
    Xiamen LFT-G MXD6 Meta-Xylylen-Adipamid-Nylon Lange Glasfaserfüllung 30 % hohe Barriereeigenschaften
    Was ist MXD6? Herkömmliches aliphatisches Nylon ist leicht zu verarbeiten, weist jedoch eine starke Wasseraufnahme und eine niedrige Glasumwandlungstemperatur auf. Obwohl vollaromatisches Nylon die Mängel aliphatischer Produkte weitgehend beseitigt hat, ist die Verarbeitungsschwierigkeit exponentiell gestiegen. Nach 1972 synthetisierten Toyo Textile und Mitsubishi Gas Chemical eine neue Art von halbaromatischem Nylon MXD6, das nicht nur die Nachteile aliphatischer und vollaromatischer Harze weitgehend überwand, sondern auch einige Vorteile vollaromatischer Harze aufwies. Es wird häufig in Verpackungsmaterialien mit hoher Gasbarriere und technischen Strukturmaterialien verwendet. Zusammenfassend bietet MXD6 die folgenden Vorteile: Hohe Festigkeit und Elastizitätsmodul; Die hohe Glasübergangstemperatur beträgt 237℃ für Tm und 85℃ für Tg. Geringe Wasseraufnahme und Feuchtigkeitsdurchlässigkeit; Schnelle Kristallisationsgeschwindigkeit, einfach zu formen und herzustellen; Hervorragende Gasbarriereleistung. Warum lange Glasfasern hinzufügen? Langglasfaserverstärkter Verbundwerkstoff kann Ihre Probleme lösen, wenn andere Methoden zur Verstärkung von Kunststoffen nicht die Leistung bieten, die Sie benötigen, oder wenn Sie Metall durch Kunststoff ersetzen möchten. Langglasfaserverstärkte Verbundwerkstoffe können die Warenkosten kostengünstig senken und die mechanischen Eigenschaften des technischen internen Skelettnetzwerks effektiv verbessern. Die Leistung bleibt in einer Vielzahl von Umgebungen erhalten. Leistung und Anwendung von MXD6 Im Vergleich zu anderen Materialien bietet MXD6 die Vorteile einer hohen Festigkeit und eines hohen Elastizitätsmoduls, einer hohen Glasübergangstemperatur, einer geringen Wasseraufnahme und Feuchtigkeitsdurchlässigkeit, einer schnellen Kristallisationsgeschwindigkeit, einer bequemen Formung und Herstellung sowie hervorragenden Gasbarriereeigenschaften und kann auch eine gute Barriere sein Kohlendioxid und Sauerstoff auch bei hoher Luftfeuchtigkeit. Auf dem Endmarkt wird MXD6 selten allein verwendet und im Allgemeinen als modifizierte Komponente anderen Polymeren zugesetzt. Materialien, die MXD6 enthalten, werden hauptsächlich in der Automobil- und Verpackungsbranche eingesetzt. Als technischer Kunststoff kann MXD6 die Verwendung von Metallmaterialien in der Automobilindustrie ersetzen, beispielsweise für Elektrowerkzeuge, magnetische Materialien, Automobilgehäuse, Fahrgestelle, Träger, Motorzubehör usw. Wir bieten Ihnen: 1) Technische Parameter des LFT- und LFT-Materials und Vorderkantendesign; 2) Formfrontdesign und Empfehlungen; 3) Bieten Sie technische Unterstützung wie Spritzguss und Extrusionsformen. Systemzertifizierung Qualitätsmanagementsystem ISO9001/1949-Zertifizierung Nationales Laborakkreditierungszertifikat Innovationsunternehmen für modifizierte Kunststoffe Ehrenurkunde Schwermetall-REACH- und ROHS-Prüfung
    mehr sehen
  • MXD6-NA-LGF30
    Xiamen LFT-G MXD6 Meta-Xylylen-Adipamid-Nylon Lange Glasfaserfüllung 30 % hohe Barriereeigenschaften
    Was ist MXD6? Herkömmliches aliphatisches Nylon ist leicht zu verarbeiten, weist jedoch eine starke Wasseraufnahme und eine niedrige Glasumwandlungstemperatur auf. Obwohl vollaromatisches Nylon die Mängel aliphatischer Produkte weitgehend beseitigt hat, ist die Verarbeitungsschwierigkeit exponentiell gestiegen. Nach 1972 synthetisierten Toyo Textile und Mitsubishi Gas Chemical eine neue Art von halbaromatischem Nylon MXD6, das nicht nur die Nachteile aliphatischer und vollaromatischer Harze weitgehend überwand, sondern auch einige Vorteile vollaromatischer Harze aufwies. Es wird häufig in Verpackungsmaterialien mit hoher Gasbarriere und technischen Strukturmaterialien verwendet. Zusammenfassend bietet MXD6 die folgenden Vorteile: Hohe Festigkeit und Elastizitätsmodul; Die hohe Glasübergangstemperatur beträgt 237℃ für Tm und 85℃ für Tg. Geringe Wasseraufnahme und Feuchtigkeitsdurchlässigkeit; Schnelle Kristallisationsgeschwindigkeit, einfach zu formen und herzustellen; Hervorragende Gasbarriereleistung. Warum lange Glasfasern hinzufügen? Langglasfaserverstärkter Verbundwerkstoff kann Ihre Probleme lösen, wenn andere Methoden zur Verstärkung von Kunststoffen nicht die Leistung bieten, die Sie benötigen, oder wenn Sie Metall durch Kunststoff ersetzen möchten. Langglasfaserverstärkte Verbundwerkstoffe können die Warenkosten kostengünstig senken und die mechanischen Eigenschaften des technischen internen Skelettnetzwerks effektiv verbessern. Die Leistung bleibt in einer Vielzahl von Umgebungen erhalten. Leistung und Anwendung von MXD6 Im Vergleich zu anderen Materialien bietet MXD6 die Vorteile einer hohen Festigkeit und eines hohen Elastizitätsmoduls, einer hohen Glasübergangstemperatur, einer geringen Wasseraufnahme und Feuchtigkeitsdurchlässigkeit, einer schnellen Kristallisationsgeschwindigkeit, einer bequemen Formung und Herstellung sowie hervorragenden Gasbarriereeigenschaften und kann auch eine gute Barriere sein Kohlendioxid und Sauerstoff auch bei hoher Luftfeuchtigkeit. Auf dem Endmarkt wird MXD6 selten allein verwendet und im Allgemeinen als modifizierte Komponente anderen Polymeren zugesetzt. Materialien, die MXD6 enthalten, werden hauptsächlich in der Automobil- und Verpackungsbranche eingesetzt. Als technischer Kunststoff kann MXD6 die Verwendung von Metallmaterialien in der Automobilindustrie ersetzen, beispielsweise für Elektrowerkzeuge, magnetische Materialien, Automobilgehäuse, Fahrgestelle, Träger, Motorzubehör usw. Wir bieten Ihnen: 1) Technische Parameter des LFT- und LFT-Materials und Vorderkantendesign; 2) Formfrontdesign und Empfehlungen; 3) Bieten Sie technische Unterstützung wie Spritzguss und Extrusionsformen. Systemzertifizierung Qualitätsmanagementsystem ISO9001/1949-Zertifizierung Nationales Laborakkreditierungszertifikat Innovationsunternehmen für modifizierte Kunststoffe Ehrenurkunde Schwermetall-REACH- und ROHS-Prüfung
    mehr sehen
  • PP-NG-LGF
    Lange Glasfaserfüllung, Polypropylen in natürlicher Farbe, maßgeschneiderte Kunststoffmuster
    Güteklasse: Allgemeine Güteklasse, hitzebeständige Güteklasse, UV-beständige Güteklasse, härtebeständige Güteklasse Faserspezifikation: 10 % - 70 % Produktanwendung: Industrieprodukte, Haushaltsgeräte, Automobilkomponenten usw.
    mehr sehen
  • PPA-NA-LGF40
    LFT-G PPA-verstärkte Materialien zum Füllen von Langglasfaserpellets für Autoteile, große Produktmuster verfügbar
    PPA-Kunststoff PPA wird durch Polykondensation von aliphatischem Diamin oder Diamin mit benzolringhaltigem Diamin oder Diamin hergestellt. Im Vergleich zu aliphatischen Polyamiden führt die Einführung eines starren Benzolrings in die Molekülkette zu einer deutlichen Steigerung der mechanischen Festigkeit und Hitzebeständigkeit sowie zu einer deutlichen Verringerung der Wasseraufnahme. Im Vergleich zu aromatischen Polyamiden weisen halbaromatische Polyamide flexiblere aliphatische Strukturen im Molekulargewicht und niedrigere Schmelzpunkte auf, was die Verarbeitungsleistung aromatischer Polyamide wirksam verbessert. Da PPA sowohl die hervorragende Leistung von aromatischem Polyamid als auch die gute Verarbeitbarkeit von aliphatischem Polyamid aufweist, hat es sich nach Jahren der Entwicklung zu einer der wichtigsten Sorten spezieller technischer Kunststoffe entwickelt und wird häufig in elektronischen und elektrischen Geräten, der Automobilindustrie und anderen Bereichen eingesetzt. PPA-Füllung Langglasfasercompounds Glasfaserverstärkte PPA-Verbundwerkstoffe gelten aufgrund ihrer hohen Temperaturbeständigkeit, hohen Festigkeit und geringen Dichte als das beste Harz zum Ersetzen von Stahl durch Kunststoff. Langglasfaserverstärkte PPA-Verbundwerkstoffe weisen bessere physikalische und mechanische Eigenschaften auf als herkömmliche kurzfaserverstärkte Pellets. LCF und SGF Datenblatt als Referenz Anwendungen Kunden und wir Nehmen Sie gerne Kontakt mit uns auf.
    mehr sehen
erste Seite 11 12 13 14 15 16 17 18 19 20 letzte Seite

insgesamt 54 Seiten

Newsletter

-- Updates mit den neuesten Themen erhalten

Copyright © 2015-2024 Xiamen LFT composite plastic Co.,ltd..Alle Rechte vorbehalten.

Startseite

Produkte

 Nachrichten

Kontakt